Friday, January 5, 2018

Siglent 200MHz, 1Gsample/sec SDS1000X-E DSO is based on Zynq SoC

Siglent’s new SDS1000X-E family of entry-level DSOs (digital sampling oscilloscopes) feature 200MHz of bandwidth with a 1G sample/sec sample rate in the fastest family members, 14M sample points in all family models, 256 intensity levels, and a high-speed display update rate of 400,000 frames/sec. The new DSOs also include many advanced features not often found on entry-level DSOs including intelligent triggering, serial bus decoding and triggering, historical mode and sequence mode, a rich set of measurement and mathematical operations, and a 1M-point FFT. The SDS1000X-E DSO family is based on a Xilinx Zynq Z-7020 SoC, which has made it cost-effective for Siglent to migrate its high-end SPO (Super Fluorescent Oscilloscope) technology to this new entry-level DSO family.



Siglent SDS1202X-E DSO.jpg


Siglent’s new, entry-level SDS1000X-E DSO family is based on a Xilinx Zynq Z-7020 SoC



According to this WeChat article published in January by Siglent (Ding Yang Technology in China), the Zynq SoC “is very suitable for data acquisition, storage and digital signal processing in digital oscilloscopes.” In addition, the high-speed, high-density, on-chip interconnections between the Zynq SoC’s PS (processor system) and PL (programmable logic) “effectively solve” the traditional digital storage oscilloscope CPU and FPGA data-transmission bottlenecks, which reduces the DSO’s dead time between triggers and increases the waveform capture and display rates. According to the article, the system design employs four AXI ports operating between the Zynq PS and PL to achieve 8Gbytes/sec data transfers—“far greater than the local bus transmission rate” achievable using chip-to-chip I/O, with far lower power consumption.

The Zynq SoC’s combination of ARM Cortex-A9 software-driven processing and on-chip programmable logic also reduces hardware footprint and facilitates integration of high-performance processing systems into Siglent’s compact, entry-level oscilloscopes. The article also suggests that the DSO system design employs the Zynq SoC’s partial-reconfiguration capability to further reduce the parts count and the board footprint: “The PL section has 220 DSP slices and 4.9 Mb Block RAM; coupled with high throughput between the PS and PL data interfaces, we have the flexibility to configure different hardware resources for different digital signal processing.”

Further, the SDS1000X-E DSO family’s high-speed ADC uses high-speed differential-pair signaling to connect directly to the Zynq SoC’s high-speed SerDes transceivers, which guarantee’s “stable and reliable access” to the ADCs’ 1Gbyte/sec data stream while the Zynq SoC’s on-chip DDR3 controller operating at 1066Mtransfers/sec allows “the use of single-chip DDR3 to meet the real-time storage of the ADC output data requirements.”

Siglent has also used the Zynq SoC’s PL to implement the DSOs’ high-sensitivity, low-jitter, zero-temperature-drift digital triggering system, which includes many kinds of intelligent trigger functions such as slope, pulse width, video, timeout, rungs, and patterns that can help DSO users more accurately isolate waveforms of interest. Advanced bus-protocol triggers and bus events (such as the onset of I2C bus traffic or UART-specific data can also serve as trigger conditions, thanks to the high-speed triggering ability designed into the Zynq SoC’s PL. These intelligent triggers greatly facilitate debugging and add considerable value to the new Siglent entry-level DSOs.

Here’s a translated block diagram of the SDS1000X-E DSO family’s system design:



Siglent SDS1202X-E DSO Block Diagram 4.jpg


The new SDS1000X-E DSO family illustrates the result of selecting a Zynq SoC as the foundation for a system design. The large number of on-chip resources permit you to think outside of the box when it comes to adding features. Once you’ve selected a Zynq SoC, you no longer need to think about cramming code into the device to add features. With the Zynq SoC’s hardware, software, and I/O programmability, you can instead start thinking up new features that significantly improve the product’s competitive position in your market.

This is precisely what Siglent’s engineers were able to do. Once the Zynq SoC was included in the design, the designers of this entry-level DSO family were able to think about which high-performance features they wished to migrate to their new design.

No comments: